
Course

Name

Course section

(credit/hours)
Elective course(4/5)

course

code
M017

course item
course

component

Target students

Division/major/grade

opening

semester

2021 1ST

SEMESTER

Class time and classroom

Tue 10:30~12:00 (IUC419)Thu

09:00~10:30 (IUC419)Fri 1(IUC419) Fri

2(IUC419)

English

Grade
A(100%English)

Reference

to this

course

Credit compositon Theory(0) + Design(0) + Practice(0)

Prerequisite courses Computer Programming, Object-Oriented Programming

Related basic courses

Recommanded

concurrent courses

Related advanced course

Media Software Engineering

1. Course Introduction

This course teaches students how to build robust, flexible and reusable digital media software. Drawing from the best

practices and principles of software engineering, students learn how their software architectures can be taken to the

next level. To achieve this, we cover essential topics of software engineering, such as software engineering process,

agile software development, object-oriented software design (Unified Modeling Language), software design patterns

and application programming interfaces. During the second half of the course, students form teams to iteratively

develop a media software using the learned processes and techniques. This course is essential for students who have

some programming experience but have not yet learned the importance of good software architecture design and

dynamic software development process.

Instructor

Name (title/division) Teemu H. Laine(Associate Professor, Digital Media)

Office

Room

Number

Sanhak Hall 618
Extension

Number
e-mail tlaine@ajou.ac.kr

Office

hour
Tue 1pm - 3pm

Homepage

address

Teaching

Assistant

Name (title/division)

Office Room

Number

Office phone

Number
e-mail

2. Course Objectives & course outcome

The learning objectives of the course are as follows:

1. Learn about different software engineering process models.

2. Learn and apply an agile software development method (Scrum)

3. Learn to apply well-known software design patterns to make the architecture of a media software highly flexible,

robust and reusable.

4. Learn the basic principles about object-oriented software design and how to apply Unified Modeling Language to

design robust and extensible software architectures.

5. Improve software development and team work skills through individual assignments and an agile media software

development process.

3. Class types and activities

The course is based on theory lectures and practical lab sessions during which the students practice software design

and implementation by solving various problems. The theory lectures cover the essential topics on media software

development, such as software engineering process models, software architecture design, the UML language, software

design patterns, network programming, and Application Programming Interfaces.

Students will receive weekly design and programming lab assignments that help them understand the theoretical

content and acquire the skills needed to apply the theories in practice. The lab sessions are interactive, whereby

professor and/or TAs provide practical guidance to students. Coding and design demonstrations are also provided.

Through practical case studies and lab assignments, students also learn how to leverage rich repositories of

Application Programming Interfaces found on the Internet to speed up their media software development.

Later in the course, students will work in teams to iteratively design, implement and evaluate a media software with

focus on software architecture design. This team project is based on the knowledge and skills that the students acquire

during the course. Scrum, an agile software development method, will be used for the team project. During the team

project, weekly lecture and lab slots are dedicated to students to work together, to present their weekly progress

(Scrum sprints), and to get help from professor and TAs.

4. Teaching Method

V lecture V discussion and debate

V team project(presentation and case studies) V experiments(role-playing,etc)

 designing and production on-site learning(on-site training)

 others

5. Support Systems in Use

V AjouBb automatic recording system web-based assignment

V cyber lecture V online content

 class behavior analyazing system V others (Chatroom)

6. Teaching Tools

V PBL(Problem Based Learning) CBL(Case Based Learning) V TBL(Team Based Learning)

 UR(Undergraduate Research) FL(Flipped Learning) DSAL(Data Sciencd Active Learning)

 others

7. Evaluation method of course outcome

Evaluation Item
The Number of

Times

Evaluation

Proportion
Remarks

Attendance 5 Attendance

midterm exam 30 Mid-term exam

final exam 15 Final exam

quiz

presentation

discussion

homework 25 Individual assignments

etc 25 Team project

study hours

8. Textbook and Reference material

Main/Sub Title Writer Publisher
Publication

year

To be announced (all needed materials will be

in the lecture notes and website references)

9. Class system and Class shedule

The following topics will be covered (tentative):

● Software engineering process

● Object-oriented design

● Unified Modeling Language

● Software Design Patterns (e.g. Singleton, Observer, Decorator, Factory, Command, Adapter, Facade, State,

Iterator, Composite, etc)

● Basics of network programming and client-server architecture (using Java, C#)

● Application Programming Interfaces (REST)

NOTE: the lecture plan is tentative and may change during the course.

< Schedule >

Weeks Title of lecture
langua

ge

time distribution(minutes)

Teaching

Method

evaluation

method
theory design

experimen

t

practice

1 Course introduction E

Lectures,

demonstrations,

discussion, practice

* language : K-korean, E-English

< Schedule >

Weeks Title of lecture
langua

ge

time distribution(minutes)

Teaching

Method

evaluation

method
theory design

experimen

t

practice

2
Software engineering profess

models
E

Lectures,

demonstrations,

discussion, practice

3 Object-oriented design 1 E

Lectures,

demonstrations,

discussion, practice

4 Object-oriented design 2 E

Lectures,

demonstrations,

discussion, practice

5 Software design patterns 1 E

Lectures,

demonstrations,

discussion, practice

6 Software design patterns 2 E

Lectures,

demonstrations,

discussion, practice

7 Software design patterns 3 E

Lectures,

demonstrations,

discussion, practice

8 Mid-term exam E Exam

9 Basics of network programming E

Lectures,

demonstrations,

discussion, practice

10 Using RESTful APIs E

Lectures,

demonstrations,

discussion, practice

11 Creating RESTful APIs E

Lectures,

demonstrations,

discussion,

practice, team

project

12 Team project E Team project

13 Team project E Team project

14 Team project E Team project

15 Team project presentations E Team project

16 Final exam E Exam

* language : K-korean, E-English

10. Contribution index of the course for attaining ABEEK program outcomes

course outcome contribution scale

No Data

11. Analysis of improved matters for the previous semester

13. Reference items

